Co	de	No:	P18	BME	T02				
Н	ΑI	LT	ICK	ET N	NUM	BEF	2		

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 METALLURGY & MATERIAL SCIENCE

(Common to ME, AME Branches)

Time: 3 hours Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

Answer all the questions in Part-A (5X2=10M)

Q.	No.	Questions	Marks	CO	KL
1	a)	Write the primary atomic bonds and give one example for each	[2M]	1	
	b)	Define Cementite in Fe-Fe3C alloy system	[2M]	2	
	c)	Discuss a few applications of tool and die steels	[2M]	3	
	d)	Why tempering is required after hardening of steels? explain	[2M]	4	
	e)	Write a few applications of composite materials	[2M]	5	

<u>PART-B</u> Answer One Question from each UNIT (5X10=50M)

Q.1	No.	Questions Question from each ONTI (3X10–30M)	Marks	CO	KL				
	UNIT-I								
2.	a)	Derive atomic packing factor for FCC crystal structure	[5M]	1					
	b)	Why materials with smaller grains exhibit better mechanical properties? Explain.	[5M]	1					
	OR								
3.	a)	Draw the basic crystal structures and write the unit cell parameters	[5M]	1					
	b)	Discuss Hume-Rothery principles in producing solid solution alloys	[5M]	1					
		UNIT-II	<u> </u>						
4.	a)	Discuss the experimental methods to develop phase diagrams	[5M]	2					
	b)	Draw Fe-Fe3C phase diagrams and explain each zone	[5M]	2					
	•	OR							
5.	a)	Explain i) eutectic and ii) peritectic phase reactions with neat diagrams	[5M]	2					
	b)	Discuss i) Martensite and ii) Bainite in Fe-Fe3C alloy system	[5M]	2					
	UNIT-III								
6.	a)	Discuss the structure and applications of plain carbon steels	[5M]	3					
	b)	Why Gray Cast iron exhibits better damping properties? explain	[5M]	3					
	ı	OR							
7.	a)	Why stainless steel exhibit better corrosion resistance? explain	[5M]	3					
	b)	How cast irons are different compared with steels? explain	[5M]	3					
	•	UNIT-IV							
8.	a)	What is hardenability? Explain Jominy end quench test	[5M]	4					
	b)	Discuss the hardening heat treatment and the characteristic of Martensite	[5M]	4					
OR									
9.	a)	How TTT diagrams are developed? Explain with one example	[5M]	4					

R18

Code No: P18MET02

	b)	What do you understand by surface hardening of steels? Write short notes on	[5M]	4			
		Nitriding					
UNIT-V							
10.	a)	Discuss i) crystalline ceramics and ii) glasses	[5M]	5			
	b)	Explain the steps involved in powder metallurgy process	[5M]	5			
OR							
11.	a)	Explain the types of composite materials with examples	[5M]	5			
	b)	What are the potential industrial applications of powder metallurgy? discuss	[5M]	5			
